TD 13: Convergence et approximations

Exercice 1:

□ une loi de Poisson de paramètres $m=5$ et $\sigma=\sqrt{4,9}$ □ autre :
2) Pour étudier la loi binomiale de paramètres $n=150$ et $p=0.96$ on peut utiliser l'approximation par une loi de Poisson de paramètre $\lambda=144$ une loi normale de paramètres $m=144$ et $\sigma=2.4$ une loi de Poisson de paramètre $\lambda=6$ une loi normale de paramètres $m=6$ et $\sigma=2.4$ autre :
3) La loi binomiale de paramètres $n=300$ et $p=0.45$ peut être approchée par : une loi de Poisson de paramètre $\lambda=135$ une loi normale de paramètres $m=135$ et $\sigma=74.25$ une loi normale de paramètres $m=165$ et $\sigma=8.6168$ une loi normale de paramètres $m=135$ et $\sigma=8.6168$ autre :
4) Pour étudier la loi binomiale de paramètres $n=12$ et $p=0.5$ on peut utiliser l'approximation par : une loi de Poisson de paramètre $\lambda=6$ une loi normale de paramètres $m=6$ et $\sigma=\sqrt{3}$ untre :
Donnees: $\sqrt{150} \times 0.96 \times 0.04 = 7.4 = \sqrt{300} \times 0.45 \times 0.55 = \sqrt{74.75} \approx 8.6168$

Exercice 2:

Dans une grande agglomération, le service des transports en commun dispose de n bus. On a constaté, les années précédentes, que la **probabilité journalière qu'un bus tombe en panne est de 1**%.

- 1) Si cette ville dispose de 800 bus, quelle est la probabilité que le nombre de pannes journalières ne dépasse pas 4 ?
- 2) Si elle augmente son parc jusqu'à disposer de 1200 bus, avec quelle probabilité constatera-t-on au moins 15 pannes journalières ?

Exercice 3: D'après ECRICOME

Pour ce jeu de hasard, la mise pour chaque partie est de 1 euro. L'observation montre qu'une partie est gagnée avec la probabilité $\frac{1}{10}$ et perdue avec la probabilité $\frac{9}{10}$.

Toute partie gagnée rapporte 3 euros. Les différentes parties sont indépendantes. Une personne décide de jouer N parties ($N \ge 2$). On note X_N la variable aléatoire représentant le nombre de parties gagnées et Y_N la variable aléatoire représentant le gain algébrique du joueur.

- (a) Donner la loi de X_N ainsi que la valeur de l'espérance et de la variance de cette variable.
- (b) Exprimer Y_N en fonction de X_N . En déduire la valeur de l'espérance et de la variance de Y_N .
- (c) La personne décide de jouer 60 parties. On admet que l'on peut approcher X_{60} par une loi de Poisson.
 - (i) Donner le paramètre de cette loi de Poisson.
 - (ii) A l'issue des 60 parties, quelle est la probabilité que le joueur perde moins de 50 euros ?

ECG2 – TD 13 Page 1

λ k	6		7		8		9		10		12	
	P(X=k)	P(X≤k)										
0	0,0025	0,0025	0,0009	0,0009	0,0003	0,0003	0,0001	0,0001	0,0000	0,0000	0,0000	0,0000
1	0,0149	0,0174	0,0064	0,0073	0,0027	0,0030	0,0011	0,0012	0,0005	0,0005	0,0001	0,0001
2	0,0446	0,0620	0,0223	0,0296	0,0107	0,0138	0,0050	0,0062	0,0023	0,0028	0,0004	0,0005
3	0,0892	0,1512	0,0521	0,0818	0,0286	0,0424	0,0150	0,0212	0,0076	0,0103	0,0018	0,0023
4	0,1339	0,2851	0,0912	0,1730	0,0573	0,0996	0,0337	0,0550	0,0189	0,0293	0,0053	0,0076
5	0,1606	0,4457	0,1277	0,3007	0,0916	0,1912	0,0607	0,1157	0,0378	0,0671	0,0127	0,0203
6	0,1606	0,6063	0,1490	0,4497	0,1221	0,3134	0,0911	0,2068	0,0631	0,1301	0,0255	0,0458
7	0,1377	0,7440	0,1490	0,5987	0,1396	0,4530	0,1171	0,3239	0,0901	0,2202	0,0437	0,0895
8	0,1033	0,8472	0,1304	0,7291	0,1396	0,5925	0,1318	0,4557	0,1126	0,3328	0,0655	0,1550
9	0,0688	0,9161	0,1014	0,8305	0,1241	0,7166	0,1318	0,5874	0,1251	0,4579	0,0874	0,2424
10	0,0413	0,9574	0,0710	0,9015	0,0993	0,8159	0,1186	0,7060	0,1251	0,5830	0,1048	0,3472
11	0,0225	0,9799	0,0452	0,9467	0,0722	0,8881	0,0970	0,8030	0,1137	0,6968	0,1144	0,4616
12	0,0113	0,9912	0,0263	0,9730	0,0481	0,9362	0,0728	0,8758	0,0948	0,7916	0,1144	0,5760
13	0,0052	0,9964	0,0142	0,9872	0,0296	0,9658	0,0504	0,9261	0,0729	0,8645	0,1056	0,6815
14	0,0022	0,9986	0,0071	0,9943	0,0169	0,9827	0,0324	0,9585	0,0521	0,9165	0,0905	0,7720
15	0,0009	0,9995	0,0033	0,9976	0,0090	0,9918	0,0194	0,9780	0,0347	0,9513	0,0724	0,8444
16	0,0003	0,9998	0,0014	0,9990	0,0045	0,9963	0,0109	0,9889	0,0217	0,9730	0,0543	0,8987
17	0,0001	0,9999	0,0006	0,9996	0,0021	0,9984	0,0058	0,9947	0,0128	0,9857	0,0383	0,9370
18	0,0000	1,0000	0,0002	0,9999	0,0009	0,9993	0,0029	0,9976	0,0071	0,9928	0,0255	0,9626
19			0,0001	1,0000	0,0004	0,9997	0,0014	0,9989	0,0037	0,9965	0,0161	0,9787
20			0,0000	1,0000	0,0002	0,9999	0,0006	0,9996	0,0019	0,9984	0,0097	0,9884
21					0,0001	1,0000	0,0003	0,9998	0,0009	0,9993	0,0055	0,9939
22					0,0000	1,0000	0,0001	0,9999	0,0004	0,9997	0,0030	0,9970
23							0,0000	1,0000	0,0002	0,9999	0,0016	0,9985
24									0,0001	1,0000	0,0008	0,9993
25									0,0000	1,0000	0,0004	0,9997
26											0,0002	0,9999
27											0,0001	0,9999
28											0,0000	1,0000

Exercice 4: D'après EDHEC

Partie 1: Préliminaires

1. Soit f une fonction de classe C^1 sur [0;1]. On se propose, dans cette question, de démontrer un résultat sur les sommes de Riemann associées à cette fonction.

(a) Montrer qu'il existe un réel M strictement positif tel que, pour tout couple (x;y) d'éléments de [0;1], on a : $|f(x) - f(y)| \le M|x - y|$.

(b) En déduire que :
$$\forall n \in \mathbb{N}^*, \forall k \in [0, n-1], \forall t \in \left[\frac{k}{n}, \frac{k+1}{n}\right], \left|f(t) - f\left(\frac{k}{n}\right)\right| \le M\left(t - \frac{k}{n}\right)$$

$$\text{(c) Montrer alors que}: \forall n \in \mathbb{N}^*, \forall k \in \llbracket 0, n-1 \rrbracket, \left| \int_{k/n}^{(k+1)/n} f(t) dt - \frac{1}{n} f\left(\frac{k}{n}\right) \right| \leq \frac{M}{2n^2}$$

(d) En sommant la relation précédente, établir que :
$$\forall n \in \mathbb{N}^*$$
, $\left| \int_0^1 f(t)dt - \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \right| \leq \frac{M}{2n}$

ECG2 – TD 13 Page 2

(e) Conclure finalement que
$$\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$$
 converge vers $\int_0^1 f(t)dt$.

2. Pour tout couple
$$(p,q)$$
 d'entiers naturels, on pose $I(p,q) = \int_0^1 x^p (1-x)^q dx$

(a) Montrer que :
$$\forall (p,q) \in \mathbb{N}^2$$
, $I(p,q) = \frac{q}{p+1}I(p+1,q-1)$.

(b) En déduire que :
$$\forall (p,q) \in \mathbb{N}^2$$
, $I(p,q) = \frac{p! \, q!}{(p+q)!} I(p+q,0)$.

(c) Calculer
$$I(p+q,0)$$
 et montrer finalement que : $\forall (p,q) \in \mathbb{N}^2, I(p,q) = \frac{p!\,q!}{(p+q+1)!}$

Partie 2 : Étude d'une suite de variables aléatoires

Dans cette partie, m est un entier naturel fixé, supérieur ou égal à 2.

On considère une suite de variables aléatoires $(U_n)_{n\geq 1}$, toutes définies sur le même espace probabilisé (Ω,\mathcal{A},P) , telles que, pour tout entier naturel n supérieur ou égal à 1, U_n suit la loi uniforme sur $\left\{0,\frac{1}{n},\frac{2}{n},\dots,\frac{n-1}{n}\right\}$. On considère également une suite de variables aléatoires $(X_n)_{n\geq 1}$ définies elles aussi sur (Ω,\mathcal{A},P) , et

On considère également une suite de variables aléatoires $(X_n)_{n\geq 1}$ définies elles aussi sur (Ω, \mathcal{A}, P) , et telles que, pour tout entier naturel n supérieur ou égal à 1, et pour tout $k\in [0, n-1]$, la loi de X_n conditionnellement à l'événement $\left[U_n=\frac{k}{n}\right]$ est la loi binomiale $\mathcal{B}\left(m,\frac{k}{n}\right)$.

1. On considère une variable aléatoire Y suivant la loi binomiale $\mathcal{B}(m,p)$. Rappeler la valeur de l'espérance de Y puis montrer que $E(Y(Y-1))=m(m-1)p^2$.

2. Donner la loi de X_1 .

Dans toute la suite, on suppose n supérieur ou égal à 2.

3. (a) Déterminer $X_n(\Omega)$, puis montrer que, pour tout i de $X_n(\Omega)$, on a :

$$P(X_n = i) = \frac{1}{n} {m \choose i} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^i \left(1 - \frac{k}{n}\right)^{m-i}$$

(b) Utiliser la première question de cette partie pour donner sans calcul la valeur de la somme :

$$\sum_{i=1}^{m} i {m \choose i} \left(\frac{k}{n}\right)^{i} \left(1 - \frac{k}{n}\right)^{m-i}$$

Montrer alors que l'espérance de X_n est égale à $\frac{m(n-1)}{2n}$.

(c) En utilisant toujours la première question de cette partie, donner sans calcul la valeur de la somme :

$$\sum_{i=1}^{m} i(i-1) {m \choose i} \left(\frac{k}{n}\right)^{i} \left(1 - \frac{k}{n}\right)^{m-i}$$

Montrer alors que l'espérance de $X_n(X_n-1)$ est égale à $\frac{m(m-1)(n-1)(2n-1)}{6n^2}$.

(d) En déduire finalement que la variance de X_n est égale à $\frac{m(m+2)(n^2-1)}{12n^2}$.

4. (a) En utilisant les résultats obtenus aux deux premières questions de la première partie, calculer, pour tout i de $X_n(\Omega)$, $\lim_{n\to +\infty} P(X_n=i)$.

(b) En déduire que la suite (X_n) converge en loi vers une variables X dont on précisera la loi.

(c) Vérifier que $\lim_{n \to +\infty} E(X_n) = E(X)$ et $\lim_{n \to +\infty} V(X_n) = V(X)$.

ECG2 – TD 13 Page 3

Exercice 5 : D'après EML

Partie A

- 1. Soit *U* une variable aléatoire à densité suivant une loi normale d'espérance nulle et de variance $\frac{1}{2}$.
- (a) Rappeler une densité de U.
- (b) En utilisant la définition de la variance de U, montrer que l'intégrale $\int_0^{+\infty} x^2 e^{-x^2} dx$ est convergente et que $\int_0^{+\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$

Soit *F* la fonction définie sur
$$\mathbb{R}$$
 par :
$$\begin{cases} F(x) = 0 & \text{si} \quad x \le 0 \\ F(x) = 1 - e^{-x^2} & \text{si} \quad x > 0 \end{cases}$$

- 2. On suppose que la fonction F définit une fonction de répartition d'une variable aléatoire. Montrer que cette variable aléatoire est à densité. Déterminer alors une densité f associée à F.
- 3. Soit X une variable aléatoire admettant f pour densité.
- (a) Montrer que X admet une espérance E(X) et que $E(X) = \frac{\sqrt{\pi}}{2}$.
- (b) Déterminer, pour tout réel y, la probabilité $P(X^2 \le y)$.
- (c) Montrer que la variable aléatoire X^2 suit une loi exponentielle dont on précisera le paramètre. En déduire que X admet une variance V(X) et calculer V(X).

Partie B

1. Soit Z une variable aléatoire suivant une loi géométrique de paramètre *p*.

Ainsi, pour tout
$$k \in \mathbb{N}^*$$
, $P(Z = k) = p(1 - p)^{k-1}$

Rappeler la valeur de l'espérance E(Z) et celle de la variance V(Z) de la variable aléatoire Z.

2. Soient un entier n supérieur ou égal à 2 et n variables aléatoires indépendantes $Z_1, Z_2, ..., Z_n$ suivant toutes la loi géométrique de paramètre p.

On considère la variable aléatoire
$$M_n = \frac{1}{n}(Z_1 + Z_2 + \dots + Z_n)$$
.

- (a) Déterminer l'espérance m et l'écart-type σ_n de M_n .
- (b) Montrer que $\lim_{n\to+\infty} P(0 \le M_n m \le \sigma_n)$ existe et exprimer sa valeur à l'aide de $\int_0^1 e^{-\frac{x^2}{2}} dx$.